+2 PHYSICS STUDY MATERIAL -

IMPORTANT TEN MARKS QUESTIONS
ENGLISH MEDIUM : VOLUME-1\&2

PRESENTED BY
B.ELANGOVAN.M.SC.,M.ED.,M.PHIL.,
(Dr.Radhakrishnan State level Best Teacher Award -2011 recipient)
P.G.TEACHER (PHYSICS), PACHAIYAPPA'S HR.SEC.SCHOOL, KANCHEEPURAM-631501.

UNIT : 1 Electrostatics - ten marks questions

1. What is an electric dipole? Derive an expression for the electric field due to an electric dipole at a point on its axial line.
($M-06, J-06, M-09, J-10, O-10, M-11)$
2. Derive an expression for electric potential due at a point to an electric dipole.

Discus the special cases.
(O-06, M-08, J-08, M-10, O-11)
3. Deduce an expression for equivalent capacitance of capacitors connected (i) parallel (ii) series. (J-07, O-07)
4. Principle, construction and working of Van de Graaff generator. What is its use? (0-08, 0-09, O-12)
5. Derive an expression for electric field due to an electric dipole at a point along the equatorial line. (M-07, J-09)
6. State Gauss's law. Applying this calculate electric field due to (i) an infinitely long straight charged with uniform charge density.
($J-11, M-12)$
7. Explain the principle of a capacitor. Deduce an expression for the capacitance of a parallel plate capacitor. $(J-12)$
8. What is dielectric? Explain the effect of introducing a dielectric slab between the plates of a parallel plate capacitor.
9. State Gauss law using this find an expression for electric field due to uniformly charged spherical shell at a point (i)outside the shell (ii) on the surface (iii) inside the shell.

UNIT : 3 Effects of electric current- ten marks questions

1. Discuss the motion of a charged particleina uniform magnetic field. Define magnetic Lorentz force.
2. Explain the principle, construction,working and limitations of a cyclotron with a neat diagram. (M-07, O-10, O-11)
3. Obtain an expression for the torque experienced by a current loop in a uniform magnetic field.
4. Obtain expression for a magnetic induction due at a point to infinitely long straight conductor carrying current.
(J-06, O-09, M-10)
5. Apply Biot - Savart law, obtain an expression for the magnetic induction at a point due to infinitely long straight conductor carrying current.
(M-06)
6. Define ampere's circuit law. Applying it find the magnetic induction at a point due to a long solenoid carrying current.
(O-06, J-09)
7. State Joule's law. Explain Joule's calorimeter experiment to verify Joule's law of heating. (J-07, J-12)
8. Deduce the relation for the magnetic induction, at a point along the axis of a current coil carrying current.
(O-07, M-08, M-12)
9. State Tangent law. Explain in detail the principle, construction and theory of a tangent galvanometer.
10. Deduce expression for the force on a current carrying conductor placed in a magnetic field. Find the magnitude of the force.
(O-08, M-09, J-11, O-12)
11. Obtain an expression for the force between two long parallel current carrying conductors.

Hence define " ampere".

UNIT : 4 Electromagnetic induction and Alternating current
 - ten marks questions

1. Principle, construction, theory of working of transformer of a transformer. Define its efficiency. Mention the energy losses.
$(M-06, M-12)$
2. Describe principle, construction, and working of a single phase Alternating Current generator.

$$
(M-07, M-08, J-07, O-07 O-10, J-11, M-11, J-12)
$$

3. Discuss with theory the method of inducing e.m.f in a coil by changing its orientation with respect to the direction of the magnetic field.
(J-08, O-09, J-10, O-11, M-11)
4. Obtain the phase relation between voltage and current in an $A . C$ circuit containing a pure inductance.

Draw the necessary graph.
5. What are eddy current? Explain their applications. How are they minimized?
6. In an ac circuit containing a capacitor, the instantaneous emf is e=Eosinwt. Obtain the expression for instantaneous current. Explain the phase relation between emf and current by graph.
7. Explain the mutual induction between two long solenoids. Obtain an expression for the mutual inductance.
8. A source of alternating emf is connected to a series combination of a resistor R, Inductor L, Capacitor C. Calculate the current, resultant voltage and the phase angle between the current and the voltage.
(J - 06, J - 09, O-12)
Best wishes

UNIT : 5 Electromagnetic waves and wave optics - ten marks questions

1. Explain Raman scattering of light with the help of energy level diagram.
2. Write a note on (i) Nicol Prism (ii) Polaroid.
3. On the basis of wave theory, explain total internal reflection. Write the conditions for the total internal reflection to take place.
($M-06, J-06$)
4. What is known as interference? Derive an expression for band with of interference fringes in Young's double slit experiment.

$$
(O-06, O-11, O-10, J-07, J-10, M-09, M-11)
$$

5. Explain emission and absorption spectra.
(J-09, M-10, M-12, J-12, O-12)
6. State Huygens's principle on the basis of wave theory. Prove the laws of reflection.
7. Explain theory of interference in thin transparent film due to reflected light and obtain the condition for the intensity to be maximum and minimum.
8. What are called Newton's rings? Explain the experiment and theory of formation of the Newton's ring.
9. Discuss the theory of plane transmission grating.
10. Explain the refraction of a plane wave front at a plane surface and state laws of refraction.

Unit - 6 Atomic Physics - ten marks questions

1. State Bohr's postulates. Obtain an expression for the radius of $\mathrm{n}^{\text {th }}$ orbit of hydrogen atom based on the Bohr's Theory.
2. Describe the J.J Thomson method for determine the specific charge of an electron.

$$
(0-09, M-10, J-10,0-10, O-11, J-12)
$$

3. Explain the working ruby laser with the help of energy level diagram.
(O-06, J-07, M-09, J-11, O-12)
4. How will you determine the wavelength of x-rays using Bragg's spectrometer. Write any five properties of x-rays.
($M-07$)
5. Derive Bragg's law. Explain how a Bragg's spectrometer can be used to determine the wavelength of x-rays. ($J-07$)
6. Draw a neat diagram of the He-Ne laser and explain its working with the help of energy level diagram.(J - 06, M-11)
7. Describe Millikan's oil drop experiment to determine the charge of an electron.
($\mathrm{J}-08,0-08$)
8. Explain Sommerfeld atom model.
9. Give an account for principle of laser, laser action and characteristic laser.
10. Obtain an expression for the energy the electron of $\mathrm{n}^{\text {th }}$ orbit of hydrogen atom based on Bohr's theory.
Best wishes

Unit - 8 Nuclear Physics - ten marks questions

1. Describe the principle and action of a Bainbridge Mass spectrometer in determining the isotopic masses.
(J-06, J-07, J-08, O-06, M-09, J-10, O-10, J-11, O-12)
2. Explain the construction and working of a Geiger Muller counter.
(M-07, O-07, J-09, M-11)
3. What are cosmic rays? Explain the latitude effect and altitude effect regarding cosmic rays.
($M-08, M-10$)
4. Obtain an expression for the amount of the radioactive substance present at any moment.

Obtain the relation between half life period and decay constant.

$$
(O-08, O-09, O-11, M-12, J-12)
$$

5. What is the nuclear reactor? Explain the function of (i) moderator (ii) control rod (iii) neutron reflector.

Mention the uses of nuclear reactor. (diagram not necessary)
6. Compare the properties of alpha, beta and gamma rays.
7. Explain the stellar energy with proton-proton cycle and carbon-nitrogen cycle?

Unit - 9 Semi conductor devices - ten marks questions

1. With the circuit diagram, explain the working of a Bridge rectifier. Draw its input and output signals.

What are the advantages.
(M-06, J-07, M-10, J-10, O-11, J-12)
2. Explain with neat circuit diagram, the working of single stage CE amplifier. Draw the frequency response curve and discuss the result.
(J-08, M-11)
3. Sketch the circuit of a Colpitt's oscillator and explain its working.
(J-06, O-06, M-08, J-09, J-11, M-12)
4. With a circuit diagram, explain the working of an operational amplifier as a summing amplifier.
(M-07, J-12)
5. Explain the action of an operational amplifier as difference amplifier.
(O-07)
6. What meant by feed back? Derive an expression for voltage gain of an amplifier with negative feedback. (M-09)
7. What is operational amplifier? Explain its action as (i) inverting amplifier (ii) non-inverting amplifier.
8. What is called amplifier? With a circuit explain the working of transistor as amplifier.

Explain the frequency response curve.
(O-08, M-11)
9. With the help of neat circuit diagram, explain the output characteristic of an NPN transistor in CE mode and methods of finding the parameters.
(J - 08, O-10, O-12)
10. Describe the energy band structure of insulator, semi conductor and conductor.
11. Describe the construction and working of a multimeter with a neat diagram. Explain how is it used as a voltmeter and ohm-meter.
12. Explain the characteristic and working of PN junction diode in forward and reverse bias.

Unit - 10 Communication Systems - ten marks questions

1. Make the analysis of amplitude modulated wave. Plot the frequency spectrum and band width.
(J-06, O-06, M-08, M-09, J-10, O-10,J-12)
2. With the help of a functional block diagram. Explain the operation of a super heterodyne $A M$ receiver.
(J-07, M-11, M -12)
3. With the help of a functional block diagram, explain the function of a monochrome TV receiver.
($M-06, M-07, M-10, J-11)$
4. With the help of block diagram, explain the function of various units in the monochrome television transmitter.
(J-08, O-08, O-09)
5. Explain the construction and working of a vidicon camera tube with neat diagram.
6. With the help of block diagram, explain the function of radar system.
($0-07,0-11,0-12$)

PRESEN'IED BY :

B.ELANGOVAN. M.SC., M.ED., M.PHIL., P.G.TEACHER (PHYSICS),
(DR.RADHAKRISHNAN S'TATE LEVEL BES'T 'TEACHER AWARD - 2011 RECIPIEN'')

