30. Take 10 g of common salt and dissolve it in 40 g of water. Find the concentration of solution in terms of weight percent? (E-141, T-151)

$$
\begin{aligned}
\mathrm{Wt} \% & =\mathrm{Wt} \text { percent of solute/ }(\mathrm{Wt} \text { of solute }+ \text { Wt of solvent }) \times 100 \\
& =10 /(10+40) \times 100=\mathbf{2 0 \%}
\end{aligned}
$$

30. 2 g of Potassium sulphate was dissolved in 12.5 ml of water. On cooling, the first crystals appeared at $60{ }^{\circ} \mathrm{C}$. What is the solubility of Pottassium shlphate in water at $60^{\circ}{ }^{\circ} \mathbf{?} \mathbf{K}_{2} \mathbf{S O}_{4}$ (E-141, T-151)
12.5 ml of water weights 12.5 g ,

In 12.5 g of water, amount of potassium sulphate dissolved is 2 g
In 1 g of water, amount of potassium sulphate dissolved is $2 / 12.5 \mathrm{~g}$
Hence in 100 grm of water, amount of $\mathbf{K}_{2} \mathbf{S O}_{\mathbf{4}}$ dissolved is

$$
=(2 \times 100) / 12.5=16 \mathbf{g}
$$

The solubility of potassium sulphate in water at $60^{\circ} \mathrm{C}$ is 16 g .
30. 50 g of saturated solution NaCl at $30^{\circ} \mathrm{C}$ is evaporated to dryness when 13.2 g of dry NaCl was obtained. Find the solubility of NaCl at $30^{\circ} \mathrm{C}$ in water. (E-141, T-151)

$$
\begin{aligned}
\text { Mass of watr solution } & =50-13.2=36.8 \mathrm{~g} \\
\text { Solubility of } \mathrm{NaCl} & =\text { Mass of } \mathrm{NaCl} / \text { Mass of water } \times 100 \\
& =13.2 / 36.8 \times 100=\mathbf{3 6} \mathbf{g} \\
\text { Solubility of } \mathrm{NaCl} & =\mathbf{3 6} \mathbf{g}(\mathbf{a p p x} .)
\end{aligned}
$$

30. An empty evaporating dish weighs 20.0 g . On the addition of saturated solution of NaNO_{3}, the dish weighs 66.0 g . When evaporated to dryness, the dish with crystals weighs 41.5 g . Find the solubility of NaNO_{3} at $20^{\circ} \mathrm{C}$. (E-141, T-151)

Weight of saturated solutions of $\mathrm{NaNO}_{3} \quad=(66.0-20.0) \mathrm{g}=46.0 \mathrm{~g}$
Weight of crystals of $\mathrm{NaNO}_{3} \quad=(41.5-20.0) \mathrm{g}=21.5 \mathrm{~g}$
Weight of water in saturated solution $\quad=(46.0-21.5) \mathrm{g}=24.5 \mathrm{~g}$
Solubility of $\mathrm{NaNO}_{3}=$ Wt of NaNO_{3} Crystals/wt of water $\times 100$

$$
=21.5 / 24.5 \times 100=87.7 \mathrm{~g}
$$

$$
\text { The solubility of } \mathrm{NaNO}_{3} \text { at } 20^{\circ} \mathrm{C} \text { is } \quad=87.7 \mathrm{~g} \text { in } 100 \mathrm{~g} \mathrm{H}_{\mathbf{2}} \mathrm{O}
$$

30. Find the concentration of solution in terms of weight percent if 20 gram of common salt (NaCl) is dissolved in 50 gram of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$? $(\mathrm{E}-142, \mathrm{~T}-152)$

$$
\text { Wt } \%=\frac{\text { Wt percent of solute }}{(\text { Wt of solute }+ \text { Wt of solvent })} \times 100=20 /(20+50) \times 100=28.57 \%
$$

10. ATOMS AND MOLECULES

32. Find the gram molecular mass of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$? (E-149, T-160)

$$
\begin{aligned}
& 2(\mathrm{H})=2 \times 1=2 \\
& 1(\mathrm{O})=1 \times 16=16 \\
& \mathrm{H}_{2}+\mathrm{O}=2+16=18
\end{aligned}
$$

Gram molecular mass of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$
32. Find the gram molecular mass of Carbon dioxide $\left(\mathrm{CO}_{2}\right)$? (5) (E-149, T-160)

1 (C) $=1 \times 12=12$
(O) $=2 \times 16=32$
$\mathrm{C}+\mathrm{O}_{2}=12+32=44 \mathrm{~g}$
Gram molecular mass of $\mathrm{CO}_{2}=44 \mathrm{~g}$
32. Calculate the mass of 0.5 mole of iron? (E-150, T-162)

Mass of $\mathrm{Fe}=$ atomic mass \times number of moles $=55.9 \times 0.5=\mathbf{2 7 . 9 5} \mathrm{g}$
32. Calculate the number of molecules in 11 g of CO_{2} ? (50) (E-150, T-162)

Solution: gram molecular mass of $\mathrm{CO}_{2}=44 \mathrm{~g}((16 \times 2)+12)$
Number of molecules
$=6.023 \times 10^{23} \times 11 / 44$
$=1.51 \times 10^{23}$ molecule
32. Calculate the number of moles in i) 81 g of aluminium ii) 4.6 g sodium iii) 5.1 g of Ammonia iv) 90 g of water v) 2 g of NaOH . When the mass of the substance is given:($T-162, E-150$)

Number of moles in Aluminium $=$ given mass $/$ atomic mass $=81 / 27=\mathbf{3}$ moles of Al
Number of moles in Sodium = given mass $/$ atomic mass=4.6/23 $=0.2$ moles of Na
No. of moles in Ammonia $=$ given mass $/$ at. Mass $=5.1 /(14+3)=\mathbf{0 . 3}$ moles of $\mathbf{N H}_{3}$
Number of moles in $\mathrm{H}_{2} \mathrm{O}=$ given mass/ at. Mass= $90 \mathrm{~g} /(2+16)=\mathbf{5}$ moles of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
No. of moles in $\mathrm{NaOH}=$ given mass $/$ at. Mass $=2 \mathrm{~g} /(23+16+1)=\mathbf{0 . 0 5}$ moles of $\mathbf{N a O H}$
(Gram atomic mass of hydrogen $=1 \mathrm{~g} \quad$ Gram atomic mass of carbon $=12 \mathrm{~g}$
Gram atomic mass of nitrogen $=14 \mathrm{~g}$ Gram atomic mass of oxygen $=16 \mathrm{~g}$
Gram atomic mass of sodium $=23 \mathrm{~g})(\mathrm{E}-150, \mathrm{~T}-162)$
50. Mole concept is introduced to express the quality of a substance. If 90 g of water is taken in a beaker. Find the number of moles in it. (E-150, T-162) as above
50. Calculate the no. of moles a) 12.046×10^{22} atoms of Copper \quad b) 27.95 g of iron C) 1.51×10^{23} moles of $\mathrm{CO}_{2}(\mathrm{~T}-164, \mathrm{E}-152)$
a) No. of moles of Copper $=1 \times 12.046 \times 10^{22} / 6.023 \times 10^{23} \quad=\mathbf{2}$ moles
b) Atomic mass of Fe 55.9 , mass $/$ atomic mass $=27.95 \mathrm{~g} / 55.9=\mathbf{0 . 5}$ moles
c) No. of moles of $\mathrm{CO}_{2}=1.51 \times 10^{23} / 6.023 \times 10^{23} \quad=\mathbf{0 . 2 5}$ mole
32. Calculate the number of molecules in 360 g of glucose. ((E-150, T-162)

Solution: gram molecular mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180 \mathrm{~g}((12 \times 6)+(1 \times 12)+(16 \times 6))$

$$
\begin{aligned}
\text { Number of molecules } & =6.023 \times 10^{\mathbf{2 3} \times 360 / 180} \\
& =\mathbf{1 2 . 0 4 6} \times \mathbf{1 0}^{23} \text { molecules }
\end{aligned}
$$

32. One mole of any substance contains $6.023 \times \mathbf{1 0}^{\mathbf{2 3}}$ particles. If $\mathbf{3 . 0 1 1 5} \times \mathbf{1 0}^{\mathbf{2 3}}$ particles are present in CO_{2}. Find the number of moles? (50q)

$$
=3.0115 \times 10^{23} / 6.023 \times \mathbf{1 0}^{23}=\mathbf{0 . 5} \text { moles }
$$

32. Calculate the number of moles in $\mathbf{2 4 . 0 9 2} \times \mathbf{1 0}^{\mathbf{2 2}}$ molecules of water?

$$
=24.092 \times 10^{22} / 6.023 \times 10^{23}=\mathbf{4} / \mathbf{1 0}=\mathbf{0 . 4} \text { moles }
$$

32. Calculation of mass when number of particles of a substance is given:

Gram molecular mass x number of particles
Mass of a substance=

$$
6.023 \times 10^{23}
$$

Calculate the mass of 18.069×10^{23} molecules of SO_{2} ?
Sol: Gram molecular mass $\mathrm{SO}_{2}=64 \mathrm{~g} \quad((16 * 2)+32)$

$$
\text { Mass of } \mathrm{SO}_{2}=\frac{64 \times 18.069 \times 10^{23}}{6.023 \times 10^{23}}=\mathbf{1 9 2} \mathbf{g}
$$

32. Calculate the mass of 2.5 moles of Oxygen atoms?

Mass $=$ molecular mass \times number of moles

$$
=16 \times 2.5=40 \mathrm{~g}
$$

Calculate number of particles when the mass of the substance is given.
Number of particles $=$ Avogadro number \times given mass/gram molecular mass

$$
=6.023 \times 10^{23} \times 40 / 2.5=\underline{96.368 \times 10^{23}}
$$

32. Analyse the table and fill up the blanks?

Gas	Number of Moles	Mass of Gas
N_{2}	2 moles	$\underline{\mathbf{5 6} \mathbf{g}}$
O_{2}	$\underline{\mathbf{1 0}} \mathbf{\text { moles }}$	320 g

$2 \times 2 \times 14=56 \quad 2 \times 10 \times 16=320$

11. CHEMICAL REACTIONS

7. $\mathrm{pH}+\mathrm{pOH}=14$ If the value of pOH of a substance is 3 , its pH is $(3,11,14,1)$

$$
\begin{aligned}
& \mathrm{pH}+\mathrm{pOH}=14 \\
& \mathrm{pH}+3=14 \\
& \mathrm{pH} \quad=14-3=\mathbf{1 1}
\end{aligned}
$$

33. The hydroxyl ion concentration of a solution is $1.0 \times 10^{-4} \mathrm{M}$. Find the pH of the solution.

$$
\begin{array}{ll}
(\mathrm{OH}) & =1 \times 10^{-4} \mathrm{M} \\
\mathbf{p}(\mathbf{O H}) & =-\boldsymbol{\operatorname { l o g }}\left(\mathbf{1} \mathbf{x 1 0} \mathbf{0}^{-4}\right)=4 \\
\mathrm{pH}+\mathrm{pOH} & =14 \\
\mathrm{pH}+4 & =14 \\
\mathrm{pH} & =14-4=\mathbf{1 0}
\end{array}
$$

33. The hydrogen ion concentration of a solution is 0.001 M . What is the pH of the solution? (E - 169)

$$
\begin{aligned}
\mathrm{pH} & =-\log _{10}\left[\mathrm{H}_{+}\right] \\
\mathrm{pH} & =-\log _{10}(0.001) \\
\mathrm{pH} & =-\log _{10}\left(10^{-3}\right) \\
& =-(-3) \log _{10} 10[\log 10=1] \\
\mathbf{p H} & =\mathbf{3}
\end{aligned}
$$

33. The hydrogen ion concentration of a solution is $1.0 \times 10^{-9} \mathrm{M}$. What is the pH of the solution? Predict whether the given solution is acidic, basic or neutral. (E-169)

$$
\begin{aligned}
\mathrm{pH} & =-\log _{10}[\mathrm{H}+] \\
\mathrm{pH} & =-\log _{10}\left(1.0 \times 10^{-9}\right) \\
\mathrm{pH} & =-\left(\log _{10} 1.0+\log _{10} 10^{-9}\right)\left[\log _{10} 1=0\right] \\
& =-\left(0-9 \log _{10} 10\right) \\
\mathrm{pH} & =-(0-9)=9 \\
\mathbf{p H} & =9 \text { i.e. } \mathbf{p H}>7 \text { Therefore the given solution is basic. }
\end{aligned}
$$

33. The hydroxyl ion concentration of a solution is 0.001 M . What is the pH of the solution? (E-169)

$$
\begin{array}{ll}
\mathrm{pOH}=-\log _{10}[\mathrm{OH}] & \\
\mathrm{pOH}=-\log _{10}\left(10^{-3}\right) & \\
\mathrm{pOH}=3 & \\
\mathrm{pH}=14-\mathrm{pOH} & \mathrm{pH}+\mathrm{pOH}=14 \\
\mathbf{p H}=\mathbf{1 4}-\mathbf{3}=\mathbf{1 1} & \mathrm{pH}=14-\mathrm{pOH}
\end{array}
$$

33. The hydroxyl ion concentration of a solution is $1.0 \times 10^{-9} \mathrm{M}$. What is the pH of the solution? (E-169)
```
    \(\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]\)
    \(\mathrm{pOH}=-\log _{10}\left(1.0 \times 10^{-9}\right)\)
    \(\mathrm{pOH}=9\)
    \(\mathrm{pH}=14-\mathrm{pOH}\)
    \(\mathrm{pH}=14-9=5\)
```

14. The hydroxyl ion concentration of a solution is $1.0 \times 10^{-8} \mathrm{M}$. What is the pH
of the solution? ($\mathrm{p}-173$) - bq
$\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=-\log _{10}\left(1.0 \times 10^{-8}\right)$
$\mathrm{pOH}=8$
$\mathrm{pH}=14-\mathrm{pOH}$
$\mathrm{pH}=14-8=6$

12. PERIODIC CLASSIFICATION OF ELEMENTS

8. The percentage of purity of Gold is calculated for making ornaments? $(\mathrm{p}-181)$
$=22 / 24 \times 100=91.6 \Delta$ (Bis mark)
9. LAWS OF MOTION AND GRAVITATION
10. Which object has more momentum; a car travelling at $10 \mathrm{~km} / \mathrm{hr}$ or a Base ball pitched at $150 \mathrm{~km} / \mathrm{hr}$? Explain your answer. $\{$ Where: Momentum = mass x velocity; $\mathrm{p}=\mathrm{mv}$ \}

Momemtum has both direction \& Magnitude. Vector quantity in same direction. Base ball doesnot have impact but car can because low speed but high mass. Unit Kgms^{-1}
38. A bullet of mass 15 g is horizontally fired with velocity $100 \mathrm{~ms}^{-1}$ from a pistol of mass 2 kg . What is the recoil velocity of the pistol? ($\mathrm{p}-223$)
$\mathrm{M} 1=15 \mathrm{~g}$ or $0.015 \mathrm{Kg}, \mathrm{M} 2=2 \mathrm{Kg} \mathrm{u} 1=0$, $\mathrm{u} 2=0$
$\mathrm{V} 1=100 \mathrm{~m} / \mathrm{s}, \mathrm{V} 2=\mathrm{V} 1$
Therefore $\mathrm{m} 1 \mathrm{u} 1+\mathrm{m} 2 \mathrm{u} 2=(0.15 \mathrm{x} 0)+(2 \mathrm{x} 0)=0 \mathrm{kgm} / \mathrm{s}$

$$
\begin{aligned}
& =(0.015 \times 100)+(2 \times v 1) \\
& =(1.5+2 \mathrm{v}) \mathrm{Kgm} / \mathrm{s} \text { or } \mathrm{Kg} \mathrm{~ms} \\
& \\
& (1.5+2 \mathrm{v})=0 \\
& 2 \mathrm{v}=-1.5 \quad \text { V }=-1.5 / 2=0.75 \mathrm{~m} / \mathrm{s} \mathrm{or} \mathrm{~ms}^{-1}
\end{aligned}
$$

11. The weight of 50 Kg person at the surface of earth is ($50 \mathrm{~N}, 35 \mathrm{~N}, 380 \mathrm{~N}, 490 \mathrm{~N}$)

$$
\mathrm{w}=\mathrm{m}^{*} \mathrm{~g} 9.8 \mathrm{~m} / \mathrm{s}^{2}=50 \mathrm{Kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=490 \mathrm{~N}(\mathrm{E}-231, \mathrm{~T}-249)
$$

38. From the expression $g=G M / R^{2}$, the mass of the Earth can be calculated as follows:

$$
\begin{aligned}
& M=\frac{g R^{2}}{G} \\
& M=9.8 \times\left(6.38 \times 10^{6}\right)^{2} / 6.67 \times 10^{-11} \\
& M=5.98 \times 10^{24} \mathrm{~kg} .
\end{aligned}
$$

38. A constant force acts on an object of mass 10 kg for a duration of 4 s . It increases the objects velocity from $2 \mathrm{~m} \mathrm{~s}^{-1}$ to $8 \mathrm{~m} \mathrm{~s}^{-1}$ Find the magnitude of the applied force. $(\mathrm{p}-221)$

Given, mass of the object $\mathrm{m}=10 \mathrm{~kg}$
Initial velocity u $\quad=2 \mathrm{~m} \mathrm{~s}^{-1}$
Final velocity $\mathrm{v} \quad=8 \mathrm{~m} \mathrm{~s}^{-1}$

$$
\begin{array}{rl}
\text { We know, force } F & m(\mathrm{v}-\mathrm{u}) \\
& =-------- \\
\mathrm{t} \\
& 10(8-2) 10 \times 6 \quad 60
\end{array}
$$

38. Which would require a greater force for accelerating a 2 kg of mass at $4 \mathrm{~m} \mathrm{s-2}$ or a

3 kg mass at $2 \mathrm{~m} \mathrm{~s}^{-2}$? ($\mathrm{p}-221$)
We know, force $\mathrm{F}=\mathrm{ma}$
Given, $\mathrm{m}_{1}=2 \mathrm{~kg} \mathrm{a} \mathrm{a}_{1}=4 \mathrm{~m} \mathrm{~s}^{-2}$
$\mathrm{m}_{2}=3 \mathrm{~kg} \mathrm{a} 2=2 \mathrm{~m} \mathrm{~s}^{-2}$
Thus, $\quad F_{1}=m_{1} a_{1}=2 \mathrm{~kg} \times 4 \mathrm{~m} \mathrm{~s}^{-2}=\mathbf{8} \mathbf{N}$
and $\quad \mathrm{F}_{2}=\mathrm{m}_{2} \mathrm{a}_{2}=3 \mathrm{~kg} \times 2 \mathrm{~m} \mathrm{~s}^{-2}=\mathbf{6 N}$

$$
\Rightarrow F_{1}>F_{2}
$$

Thus, accelerating a 2 kg mass at $4 \mathrm{~m} \mathrm{~s}^{-2}$ would require a greater force.

16. ELECTRICITY AND ENERGY

40. A current of 0.75 A is drawn by a filament of an electric bulb for 10 minutes. Find the amount of electric charge that flows through the circuit. (p-234)

$$
\begin{aligned}
\mathrm{I} & =0.75 \mathrm{~A}, \\
\mathrm{t} & =10 \text { minutes }=600 \mathrm{~s} \\
\mathrm{Q} & =\mathrm{I} \times \mathrm{t} \\
& =0.75 \mathrm{~A} \times 600 \mathrm{~s} \\
\mathbf{Q} & =\mathbf{4 5 0} \mathbf{C}
\end{aligned}
$$

40. How much work is done in moving a charge of 5 C across two points having a potential difference 10 V ? (p-235)

Given charge, $\quad \mathrm{Q}=5 \mathrm{C}$
Potential difference, $\quad \mathrm{V}=10 \mathrm{~V}$
The amount of work done
in moving the charge, $\mathrm{W}=\mathrm{V} \times \mathrm{Q}$

$$
\mathrm{W}=10 \mathrm{~V} \times 5 \mathrm{C}=50 \mathrm{~J}
$$

40. The potential difference between the terminals of an electric heater is 60 V when it draws a current of 5 A from the source. What current will the heater draw if the potential difference is increased to 120 V ? (p- 236)

Given the potential difference, $\mathrm{V}=60 \mathrm{~V}$
Current, I = 5 A ,
According to ohm's law,
$\mathrm{R}=\mathrm{V} / \mathrm{I}=60 \mathrm{~V} / 5 \mathrm{~A}=12 \Omega$
When the potential difference is increased to 120 V , the current is given by

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}=120 \mathrm{~V} / 12 \Omega=10 \mathrm{~A}
$$

40. Two resistances 18Ω and 6Ω are connected to a 6 V battery in series. Calculate
(a) the total resistance of the circuit, (b) the current through the circuit. (p-238)
(a) Given the resistance, $\mathrm{R}_{1}=18 \Omega$,

$$
\mathrm{R}_{2}=6 \Omega
$$

The total resistance of the circuit $\mathrm{Rs}=\mathrm{R}_{1}+\mathrm{R}_{2}$

$$
\mathrm{Rs}=18 \Omega+6 \Omega=\mathbf{2 4} \Omega
$$

(b) The potential difference across the two terminals of the battery $\mathrm{V}=6 \mathrm{~V}$ Now the current through the circuit,

$$
\mathrm{I}=\mathrm{V} / \mathrm{Rs}=6 \mathrm{~V} / 24 \Omega=\mathbf{0 . 2 5} \mathbf{A}
$$

40. Three resistances having the values $5 \Omega, 10 \Omega, 30 \Omega$ are connected parallel with each other. Calculate the total circuit resistance. (p-239)

Given, $\mathrm{R}_{1}=5 \Omega, \mathrm{R}_{2}=10 \Omega, \mathrm{R}_{3}=30 \Omega$
These resistances are connected parallel
Therefore, $1 / R_{p}=1 / R_{1}+1 / R_{2}+1 / R_{3}$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 10\end{array}$
$\overline{\mathrm{R}_{\mathrm{p}}}=\frac{1}{5}+\overline{10}+\overline{30}=\frac{-}{30}$
30
$\mathrm{R}_{\mathrm{p}}=-=3 \Omega$
10
40. A potential difference 20 V is applied across a 4Ω resistor. Find the rate of production of heat. (p-240)

$$
\begin{aligned}
\text { Given potential difference, } \mathrm{V} & =20 \mathrm{~V} \\
\text { The resistance, } \mathrm{R} & =4 \Omega \\
\text { The time, } \mathrm{t} & =1 \mathrm{~s} \\
\text { According to ohm's law, } \mathrm{I} & =\mathrm{V} / \mathrm{R} \\
\mathrm{I} & =20 \mathrm{~V} / 4 \Omega=5 \mathrm{~A}
\end{aligned}
$$

The rate of production of heat, $\mathrm{H}=\mathrm{I}_{2} \mathrm{RT}$

$$
\mathrm{H}=5_{2} \times 4 \times 1 \mathrm{~J}=100 \mathrm{~J}
$$

40. The potential difference between the terminals of an electric heater is 60 V when it draws a current of 5A from the source. What current will the heater draw if the potential difference is increased to 120 V ? (E-236, T-256)

$$
\begin{aligned}
& \mathrm{R}=\mathrm{V} / \mathrm{I}=60 / 5=12 \Omega \\
& \mathrm{~V}=120 \mathrm{~V}, \quad \mathrm{I}=\mathrm{V} / \mathrm{R}=120 / 12=10 \mathrm{~A}
\end{aligned}
$$

40. Calculate the energy produced when 1 kg of substance is fully converted into energy. (p-250)

$$
\begin{aligned}
\text { Energy produced, } \mathrm{E} & =\mathrm{mc} 2 \\
\text { Mass, } \mathrm{m} & =1 \mathrm{~kg} \\
\text { Velocity of light, } \mathrm{c} & =3 \times 10_{8} \mathrm{~m} \mathrm{s-1} \\
\mathrm{E} & =1 \times\left(3 \times 10_{8}\right)_{2} \\
\mathrm{E} & =9 \times 10_{16} \mathrm{~J}
\end{aligned}
$$

40. An electric bulb is connected to a 220 V generator. The current is 0.50 A . what is the power of the bulb? (p-241)

Electric generator
voltage, $\mathrm{V}=220 \mathrm{~V}$, the current, $\mathrm{I}=0.50 \mathrm{~A}$
The power of the bulb,

$$
\mathrm{P}=\mathrm{VI}=220 \times 0.50=110 \mathrm{~W}
$$

40. Fill in the blanks (E-249) ${ }_{92} \mathrm{U}^{235}+{ }_{o n}{ }^{1} \longrightarrow{ }_{56} \underline{\mathbf{B a}^{141}}+{ }_{36} \mathrm{Kr}^{92}+\underline{\mathbf{3}} \underline{\underline{n}} \underline{\mathbf{n}^{1}}+200 \mathrm{Mev}$
41. You are given three resistors of $10 \Omega, 20 \Omega, 15 \Omega$ connected in parallel with a battery of 2.5 V , a key, an ammeter and a voltmeter. Draw the circuit diagram showing the correct connections of all the given components.(E-253, T-274)

42. A 3 V torch bulb draws a current 0.6 A . Calculate the resistance of the bulb when glowing.(additional qs)

$$
\mathrm{R}=\mathrm{V} / \mathrm{I}=3 / 0.6=5 \Omega
$$

41. Three resistances having the values $5,10,30$ ohms are connected parallel with each other. Calculate the total circuit resistance. (T-258, E-239)

$$
\begin{aligned}
& 1 / R p=1 / R_{1}+1 / R_{2} \ldots . \\
& 1 / R p=(1 / 5)+(1 / 10)+(1 / 30)=6+3+1 / 30=1 / 3=1 / 3=3 \Omega
\end{aligned}
$$

12. The potential difference required to pass a current 0.2 A in a wire of resistance 20 ohm is ($100 \mathrm{~V}, 40 \mathrm{~V}, 0.1 \mathrm{~V}, 4 \mathrm{~V})(\mathrm{T}-273, \mathrm{E}-252)$

$$
\mathrm{R}=\mathrm{V} / \mathrm{I}, \quad 20=\mathrm{V} / 0.2 \quad \mathrm{~V}=20 * 0.2=4 \mathrm{~V}
$$

17. MAGNETIC EFFECT OF CURRENT AND LIGHT

14. The focal length of a concave lens is $-2 . m$ then the power of the lens is (0.2D, -O.2D, 0.5 D, -0.5D) (E-279, T-300) $\mathrm{p}=1 / \mathrm{f} \mathrm{D}$ or dioptre $($ in m$) \mathrm{p}=1 /-2=-0.5 \mathrm{D}$
15. A concave lens has focal length of 15 cm . At what distance should the object be placed so that it forms an image 10 cm from the lens. ($\mathrm{E}-276, \mathrm{~T}-300$)

$$
\begin{aligned}
& v=-10 \mathrm{~cm}, \mathrm{f}=-15 \mathrm{~cm}, \mathrm{u}=? \\
& 1 / \mathrm{v}-1 / \mathrm{u}=1 / \mathrm{f} \\
& 1 / \mathrm{u}=1 / \mathrm{v}-1 / \mathrm{f} \\
& 1 / \mathrm{u}=(1 /-10)-(1 /-15) \\
& 1 / \mathrm{u}=(-3+2) / 30 \\
&=-1 / 30 \\
& u=-30 \mathrm{~cm} . \text { Thus, the object distance is } 30 \mathrm{~cm} .
\end{aligned}
$$

38. Light year is the distance travelled by light in one year in vacuum. Distance traveled by light in one year in vacuum $=$ Velocity of light x I year (in seconds) (p-2)

$$
\begin{aligned}
& =3 \times 10^{8} \times 365.25 \times 24 \times 60 \times 60 \\
& =9.467 \times 10^{15} \mathrm{~m}
\end{aligned}
$$

Therefore, 1 light year $=9.467 \times 10^{15} \mathrm{~m}$
41. An object is placed at a distance of 30 cm from a concave lens of focal length 15 cm . An erect and virtual image is formed at a distance of 10 cm from the lens.Calculate the magnification. $(\mathrm{p}-278)$

Object distance, $u=-30 \mathrm{~cm}$
Image distance, $v=-10 \mathrm{~cm}$
Magnification, $\mathrm{m}=\mathrm{v} / \mathrm{u}$

$$
\mathrm{m}=\stackrel{-10 \mathrm{~cm}}{--------} \begin{aligned}
& 1 \\
& -30 \mathrm{~cm} \\
& -- \\
& 3
\end{aligned}=+\mathbf{0 . 3 3}
$$

41. A convex mirror used for rear-view on an automobile has a radius of curvature of 3 m . If a bus is located at 5 m from this mirror, find the position and nature of the image.

Radius of curvature, $\mathrm{R}=+3.00 \mathrm{~m}$
Object distance $u=-5.00 \mathrm{~m}$ Image distance $\mathrm{v}=$?
Focal length ,
$\mathrm{f}=\mathrm{R} / 2=+3.00 \mathrm{~m} / 2=1.5 \mathrm{~m}$

$$
\begin{aligned}
& \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \text { or } \\
& 111 \\
& \bar{v}=-\quad-\quad \text { } \\
& \begin{array}{c}
=\frac{1}{1.5--\frac{1}{-5.00}}=\frac{1}{1.5}+\frac{1}{5.00} \\
\begin{array}{c}
5.00+1.50 \\
=-------------- \\
7.50
\end{array} \quad \begin{array}{l}
7.50
\end{array}
\end{array} \\
& 7.50 \\
& \mathrm{~V}=-------=1.15 \mathrm{~m} \\
& 6.50
\end{aligned}
$$

The image is 1.15 m at the back of the mirror. The image is virtual.
www.kalvisolai.com-9 of 9 .
B. FAZOULOUDINE TGT IAGHSS MUTHIRAPALAYAM PUDUCHERRY 9443707342

