ZOOLOGY

EX. NO: 1

TO FIND OUT THE PRESENCE OF STARCH IN THE GIVEN FOOD SAMPLES OF A AND B USING IODINE SOLUTION

QUESTION:

To find out the presence of starch in the given food samples of A and B by using lodine solution.

1. MATERIALS REQUIRED: (1 mark)

Food samples, test tube, iodine solution.
2. PROCEDURE: (1 mark)

Take 1 ml of food sample A and B in separate test tubes.
$>$ Add one drop of lodine solution in both test tubes.
> Observe the colour change and record.
3. TABLE: (2 mark)

S. No.	Food Sample	Observation	Presence/Absence
1	A	No characteristic change	Absence of starch
2	B	Dark blue colour appears	Presence of starch

4. RESULT: (1 mark)

The food sample \qquad B contains starch.

EX. NO: 2

TO FIND OUT THE RATE OF HEART BEAT OF HUMAN BEINGS BY USING STETHOSCOPE UNDER NORMAL PHYSICAL CONDITIONS

QUESTION:

To find out the rate of heart beat of a person by using stethoscope.

1. MATERIALS REQUIRED: (1 mark)

Stethoscope, Stop watch.
2. PROCEDURE: (1 mark)
> Use the Stethoscope and hear the Lubb and Dubb sound which make up a heart beats.
> Count the number of heart beats per minute and record.
3. TABLE: (2 mark)

S. No.	Name of the Person	No of heart beats per minute
1	N. AASHIQ	72
2	J. JAISON	72
3	J. WATSON	72
Average:		72

4. INFERENCE: (1 mark)

Under normal conditions the average human heart beat is found to be $\mathbf{7 2}$ per minute.

EX. NO: 3

TO FIND OUT THE BODY TEMPERATURE BY USING CLINICAL THERMOMETER AND TO COMPARE WITH SURROUNDING TEMPERATURE

QUESTION:

To find out the Body Temperature of human being using Clinical Thermometer.

1. MATERIALS REQUIRED: (1 mark)

Clinical thermometer, Lab thermometer.
2. PROCEDURE: (1 mark)
> Find out the temperature by using lab thermometer.
$>$ Keep the mercury bulb of the clinical thermometer at the arm pit for a minute and record the temperature.
3. TABLE: (2 mark)

S. No.	Test	Body Temperature ${ }^{0} \mathrm{~F}$	Room Temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} C=F-32 \\ x 5 / 9 \end{gathered}$
1	Inside the room Outside the room	$\begin{aligned} & 98.4 \mathrm{~F} \\ & 98.4 \mathrm{~F} \end{aligned}$	$32{ }^{\circ} \mathrm{C}$	$36.9{ }^{\circ} \mathrm{C}$

4. INFERENCE: (1 mark)

Under normal conditions the body temperature of human beings is $98.4^{\circ} \mathrm{F}, 36.9^{\circ} \mathrm{C}$

EX. NO: 4

TO CALCULATE THE BODY MASS INDEX OF A PERSON, BY USING THE BMI FORMULA AND COMPARING THE VALUE WITH BMI CHART.

QUESTION:

To calculate the BMI of any one of your classmates by using the $\mathbf{B M I}$ formula.

1. MATERIALS REQUIRED: (1 mark)

Weighing machine, Measuring tape.
2. PROCEDURE: (1 mark)

Find out the weight of your classmate by using weighing machine.

- Find out the height of the same person by using measuring tape.

$$
\text { BMI }=\frac{\text { weight }(\mathrm{kg})}{\text { height }(m)}
$$

Find out the $\mathbf{B M I}$ and record.
3. TABLE: (2 mark)

S. No.	Persons	Weight (kg)	Height (meter)	Height (meter ${ }^{2}$)	BMI
1	LOGESH	50	1.5×1.5	2.25	$50 / 2.25=22.2$

3. INFERENCE: (1 mark)

The BMI of my classmate Selvan/Selvi J. LOGESH is \qquad and so he/she is normal/obese/lean.
A. JEBASINGH, M.Sc., M.Phil ., B.Ed. Cell: 9445766001 CHENGALPATTU-2.
A. NAZEER AHAMED M.Sc., M.Phil ., B.Ed. CELL: 9444742159 CHENGALPATTU - 2.

BOTANY

EX. NO: 5

TO DISSECT AND DISPLAY THEANDROECIUM AND
 GYNOECIUM OF ANY LOCALLY AVAILABLE FLOWERS

QUESTION:

To dissect and display the Androecium and Gynoecium of any locally available flowers.

1. IDENTIFICATION: (1 mark)

The flower given for dissection is identified as Hibiscus/ Datura metal
2. DISSECT AND DISPLAY OF GIVEN FLOWER: (1 mark)

Dissect and display the Androecium and
Gynoecium and given flower on white sheet and label the parts

Androecium:

1. Anther
2. Filament

Gynoecium

1. Ovary
2. Style
3. Stigma
4. PROCEDURE : (1 mark)
$>$ The given has been identified and the flower dissected and displayed on white sheet.
$>$ The parts of the given flower is labled.
5. TABLE: (2 mark)

S. No.	Name of the flower	No. of stemen	No. of stigma
1	Hibiscus rosasininsis	Infinity	5
2	Datura metal	5	1

A. JEBASINGH, M.Sc., M.Phil ., B.Ed. Cell: 9445766001 CHENGALPATTU-2.
A. NAZEER AHAMED M.Sc., M.Phil ., B.Ed. CELL: 9444742159

EX. NO: 6

TO CLASSIFY THE FRUITS.SEPARATE THE PERICARPS AND WRITE THE EDIBLE PARTS

QUESTION:

To classify the fruits.Separate the Pericarps and write the Edible parts.

1. IDENTIFICATION : (1 mark)

The given fruits name is Tomato (Berry) or lemon (Hesperidium)

2. PROCEDURE: (2 mark)

The given fruit is sliced and separate the epicarp, mesocarp and endocarp.

TOMATO:

$>$ It is differentiate into epicarp and mesocarp.
$>$ The mesocarp and endocarp is fused together.
$>$ The edible part is mesocarp.
3. TABLE: (2 mark)

S. No.	Type of Fruit	Nature of Pericarp	Edible Part
1	Berry:Tomato or Banana	Soft	Fleshy Mesocarp
2	Hesperidium: Lemon or orange	Hard	Juicy Hair
3	Drupe: mango	Hard	Mesocarp

4. INFERENCE:

The given fruits has been classified and labeled the edible parts.

EX. NO: 7

IDENTIFY THE STRUCTURE OF OVULE
QUESTION:
The given slide kept for identification is L.S. of ovule.

1. IDENTIFICATION: (1 mark)

The given slide consists of the structure of L.S. of ovule.
2. PROCEDURE: (1 mark)

The slide is kept in compound microscope and it is viewed and I have seen the structure of L.S. Ovule with components like Nucellus, Egg, Integuments and Funicle.
3. TABLE: (2 mark)

S. NO.	OBSERVATION (EXPLANATION)
1	The ovule has 2 layers of wall called as Integuments.
2	Inner to the integuments, Nucellus is present.
3	The embryo sac has Egg, Polar nuclei and Antipodal cells.
4	The ovule is small structure present in the ovary.
5	The ovule is converted into seeds.

4. RESULT: (1 mark)

The given slide has been identified and explained.

EX. NO: 8

TO PROVE THE ANAEROBIC RESPIRATION (FERMENTATION)
QUESTION:
To prove the Anaerobic Respiration (Fermentation).

1. MATERIALS REQUIRED: (1 mark)

Test Tube, Sugar Solution, Yeast.
2. PROCEDURE: (1 mark)
$>$ Sugar solution is taken in a test tube.
$>$ A little quantity of yeast is added.
> The tube is placed in a warm place.
$>$ Record the observation and Inference.
3. OBSERVATION AND INFERENCE: (2 mark)

Observation	Inference
Appearance of Effervescence.	Smell of alcohol.

4. RESULT: (1 mark)

The Alcohol Smell indicates that the sugar is converted into alcohol by fermentation.

CHEMISTRY

EX. NO: 9
 TO FIND OUT THE P^{H} OF A GIVEN SOLUTION USING P^{H} PAPER

QUESTION:

To find out the $\mathbf{P}^{\mathbf{H}}$ of the given solution using $\mathbf{P}^{\mathbf{H}}$ paper..

1. PROCEDURE: (1 mark)
$>$ Take about 10 ml of the given samples in different test tubes and label them as A, B, C, D.
$>$ Dip the P^{H} paper into the test tubes.
$>$ Compare the colour of P^{H} paper with the colour chart of P^{H} reference.
$>$ Note the approximate value of P^{H}.
2. TABLE: (2 mark)

Test tubes	Sample	\mathbf{P}^{H} Paper		Nature of solution
		Approximate \mathbf{P}^{H}	Acidic/Basic/Natural	
A	Dil. Hcl	Red	1	Acidic
B	Dil. NaOH	Violet	13	Basic

3. RESULT: (2 mark)

The tube A contains Acid.
The tube B contains Basic.

EX. NO: 10

TO IDENTIFY ACIDS AND BASES

QUESTION:

To identify the presence of an Acid or a Base in a given sample.

1. MATERIALS REQUIRED: (1 mark)

Test tubes, Test tube stand, Glass rod, Litmus paper (both red and blue), Acids, Bases, Phenolphthalein, Methyl orange solution.
2. TABLE: (3 mark)

S. No.	Experiment	Observation (Colour change)	Inference (Acid/Base)
1	Take 5ml of the test solution in a test tube, add phenolphthalein in drops to this content.	Pink colour appears	Presence of Base
2	Take 5ml of the test solution in a test tube and add methyl orange in drops.	Yellow colour appears	Presence colour appears Base
3	Take 10ml of the test solution in a test tube and dip red or blue litmus paper into the test tube.	Red turns into Blue litmus paper	Presence of Acid

3. RESULT: (1 mark)

The given sample contains Acid/Base.
A. JEBASINGH, M.Sc., M.Phil ., B.Ed. Cell: 9445766001 CHENGALPATTU-2.
A. NAZEER AHAMED M.Sc., M.Phil ., B.Ed. CELL: 9444742159 CHENGALPATTU - 2.

EX. NO: 11

PREPARATION OF TRUE SOLUTION, COLLOIDAL SOLUTION AND SUSPENSION

QUESTION:

To prepare true solution, Colloidal solution and Suspension.

1. PROCEDURE: (1 mark)

$>$ Take 20 ml of water in three different beakers and label them as A, B, C.
$>$ Add common salt in A, starch in B, and chalk power in C.
$>$ Stir the contents of three different beakers gently.
> Record your observations.
2. TABLE: (2 mark)

Beakers	Observation	Inference
A	Particles don't settle down	True Solution
B	Particles don't settle down but it forms turbid solution	Colloidal Solution
C	Particles settle down to form Sediment	Suspension

3. RESULT: (2 mark)
4. True solution is in beaker $\underline{\text { A. }}$
5. Colloidal solution is in beaker \underline{B}
6. Suspension is in beaker C.

EX. NO: 12

TO PREDICT WHETHER THE REACTION IS EXOTHERMIC OR ENDOTHERMIC

QUESTION:

To predict whether a reaction is Exothermic or Endothermic using the given chemicals.

1. MATERIALS REQUIRED: (1 mark)

Test tubes, Test tube stand, Water, Glass rod, Sodium hydroxide (pellets), Ammonium chloride etc.
2. TABLE: (3 mark)

S. No.	Experiment	Observation (Hot/Cold)	Inference (Exo./Endo.)
1	Take water in a test tube. Add sodium hydroxide pellets one by stirring. Touch the test tube and not the observation.	Heat is evolved Becomes Hot	Exothermic
2	Take water in a test tube. Add ammonium chloride salt and stir well. Touch the test tube and note the observation.	Heat is absorbed	Endothermic

3. RESULT: (1 mark)

In Exothermic reaction heat is evolved.
In Endothermic reaction heat is absorbed.
A. JEBASINGH, M.Sc., M.Phil ., B.Ed. Cell: 9445766001 CHENGALPATTU-2.
A. NAZEER AHAMED M.Sc., M.Phil ., B.Ed. CELL: 9444742159 CHENGALPATTU - 2.

EX. NO: 13

SCREW GAUGE - MEASURING SMALL DIMENSIONS OF THE OBJECT

QUESTION:

To find out the Radius of the given wire.

1. APPARATUS REQUIRED:

Screw gauge, a uniform thin metal wire.
2. FORMULA: (1 mark)

Radius of the wire $\mathbf{r}=\mathrm{d} / 2$
d - Diameter of the wire
3. PROCEDURE: (2 mark)
$>$ Find the least count, zero error and zero correction of the Screw Gauge.
> Place the wire between 2 studs and it is held firmly.
$>$ Take the pitch scale reading (PSR) and head scale coincides (HSC) and tabulate the readings.
4. TABLE: (1 mark)
L.C $=0.01 \mathrm{~mm}$
$Z . E=-3$
Z.C = +0.03

S. No.	P.S.R (mm)	H.S.C	H.S.C X L.C	Total reading P.S.R +(H.S.C X L.C) \pm Z.C (mm)
1	0	77	0.77	0.80

The radius of given wire $\mathbf{r}=\mathbf{d} / \mathbf{2}=0.80 / 2$

$$
\mathrm{r}=0.40 \mathrm{~mm}
$$

5. RESULT: (1 mark)

The radius of the given wire $\mathbf{= \mathbf { 0 . 4 0 }} \mathbf{m m}$.

EX. NO: 14

RESISTANCE OF THE WIRE

QUESTION:

To determine the Resistance of the given wire.

APPARATUS REQUIRED:

A Battery, Ammeter, Voltmeter, Key, Rheostat, Experimental wire and Connecting wires.

1. FORMULA: (1 mark)

Resistance of the wire $R=\frac{V}{I} \quad \mathrm{~V}$ - Potential difference, I -Current 2. CIRCUIT DIAGRAM: ($1 / 2 \mathrm{mark}$)

Bt - battery, K - Key, Rh - rheostat
A - Ammeter, v - voltmeter.

3. PROCEDURE: ($1 / 2 \mathrm{mark}$)

The circuit is connected.
$>$ The potential difference ' V ' is noted for given current ' I ' by adjusting the rheostat.
$>$ The experiment is repeated for different values of the current.
$>$ The average values of $\frac{V}{\mathrm{I}}$ gives the resistance of the wire R.

4. TABULATION: (2 mark)

Trial No.	Ammeter reading I(ampere)	Voltmeter reading V (volt)	Resistance $\mathbf{R}=\mathrm{V} / \mathrm{I}(\mathrm{ohm})$
1	0.1	1	10
2	0.2	2	10
Mean $\mathbf{R}=\mathbf{1 0}$ ohm			

5. RESULT: (1 mark)

Resistance of the given wire $\mathbf{R}=10$ ohm.
A. JEBASINGH, M.Sc., M.Phil ., B.Ed. Cell: 9445766001 CHENGALPATTU-2.
A. NAZEER AHAMED M.Sc., M.Phil ., B.Ed. CELL: 9444742159 CHENGALPATTU - 2.

EX. NO: 15

MAPPING OF MAGNETIC FIELD

QUESTION
To map the Magnetic lines of force when the bar magnet is
placed with its north pole facing geographic north.

1. APPARATUS REQUIRED:

Drawing board, Drawing pins, Bar magnet, Small magnetic
compass needle and White sheet.
2. PROCEDURE: (1 mark)
$>$ A Sheet of paper is fixed on a drawing board.
$>$ Using a compass needle, the magnetic meridian is drawn it.
$>$ A bar magnet is placed on the magnetic meridian.
$>$ The north and south poles of the compass are marked by pencil dots.
> The process is repeated and the dots are joined as a smooth curve.
3. MAP: (1+2 mark)

4. RESULT: (1 mark)

The magnetic meridian and magnetic lines of force are mapped.
The mapped sheet is attached.

EX. NO: 16

FOCAL LENGTH OF CONVEX LENS

QUESTION:

To determine the Focal length of convex lens by distant object method.

1. APPARATUS REQUIRED:

The given convex lens, Lens stand, White screen and Meter scale.
2. FORMULA: (1 mark)

$$
\text { Focal length } f=\left(f_{1}+f_{2}+f_{3}\right) / 3
$$

$\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}-\mathrm{focal}$ length measured by focusing different distant objects.

3. PROCEDURE: (Distance Object Method) (1 mark)

> The convex lens is mounted on the stand and is kept facing a distant object.
> The white screen is placed behind the convex lens and its position is adjusted.
> The distance between the convex lens and the screen is measured.
$>$ This gives the focal length of the convex lens.
4. TABLE: (2 mark)

S. No.	Distant object	Distance between the convex and screen (cm)	
1	Tree	f_{1}	11
2	Building	f_{2}	11
3	Electric pole	f_{3}	11
Mean $\mathrm{f}=11 \mathrm{~cm}$			

5. RESULT: (1 mark)

Focal length of the given convex lens $f=11 \mathrm{~cm}$.
A. JEBASINGH, M.Sc., M.Phil ., B.Ed. Cell: 9445766001 CHENGALPATTU-2.
A. NAZEER AHAMED M.Sc., M.Phil ., B.Ed. CELL: 9444742159 CHENGALPATTU - 2.

